Path Loss Charts. This path loss is ONLY the part due to atmospheric attenuation/absorption. Based on Lieb formulations Prepared by Brian Justin WA1ZMS. Calculated for Sea Level (standard pressure).

24GHz Loss vs Dew Point

Dew point (F) vs Loss per Km
Path Loss Charts. This path loss is ONLY the part due to atmospheric attenuation/absorption. Based on Lieb formulations Prepared by Brian Justin WA1ZMS. Calculated for Sea Level (standard pressure).

47GHz Loss vs Dew Point

Dew Point (°F)

Loss (dB/km)
Path Loss Charts. This path loss is ONLY the part due to atmospheric attenuation/absorption. Based on Lieb formulations
Prepared by Brian Justin WA1ZMS. Calculated for Sea Level (standard pressure).

76GHz Loss vs Dew Point
Path Loss Charts. This path loss is ONLY the part due to atmospheric attenuation/absorption. Based on Lieb formulations
Prepared by Brian Justin WA1ZMS. Calculated for Sea Level (standard pressure).

122.8GHz Atmospheric Loss vs. Dew Point

Dew Point (°F)

Loss (dB/km)
Path Loss Charts. This path loss is ONLY the part due to atmospheric attenuation/absorption. Based on Lieb formulations Prepared by Brian Justin WA1ZMS. Calculated for Sea Level (standard pressure).

145GHz Loss vs Dew Point

Dew point (F) vs Loss per Km
Path Loss Charts. This path loss is ONLY the part due to atmospheric attenuation/absorption. Based on Lieb formulations
Prepared by Brian Justin WA1ZMS. Calculated for Sea Level (standard pressure).
Path Loss Charts. This path loss is ONLY the part due to atmospheric attenuation/absorption. Based on Lieb formulations
Prepared by Brian Justin WA1ZMS. Calculated for Sea Level (standard pressure).

322GHz Loss vs Dew Point

Dew Point (F)

Loss (dB/km)
Path Loss Charts. This path loss is ONLY the part due to atmospheric attenuation/absorption. Based on Lieb formulations Prepared by Brian Justin WA1ZMS. Calculated for Sea Level (standard pressure).